通过编写教案,教师能够合理安排教学时间和资源,提高教学效果,编写教案是教师备课的重要环节,有助于提高教学质量,以下是职场范文网小编精心为您推荐的人教版七年级下册数学教案8篇,供大家参考。
人教版七年级下册数学教案篇1
一、素质教育目标
(一)知识教学点
1.使学生理解近似数和有效数字的意义
2.给一个近似数,能说出它精确到哪一痊,它有几个有效数字
3.使学生了解近似数和有效数字是在实践中产生的.
(二)能力训练点
通过说出一个近似数的精确度和有效数字,培养学生把握关键字词,准确理解概念的能力.
(三)德育渗透点
通过近似数的学习,向学生渗透具体问题具体分析的辩证唯物主义思想
(四)美育渗透点
由于实际生活中有时要把结果搞得准确是办不到的或没有必要,所以近似数应运而生,近似数和准确数给人以美的享受.
二、学法引导
1.教学方法:从实际问题出发,启发引导,充分体现学生为主全,注重学生参与意识
2.学生学法,从身边找出应用近似数,准确数的例子→近似数概念→巩固练习
三、重点、难点、疑点及解决办法
1.重点:理解近似数的精确度和有效数字.
2.难点:正确把握一个近似数的精确度及它的有效数字的个数.
3.疑点:用科学记数法表示的近似数的精确度和有效数字的个数.
四、课时安排
1课时
五、教具学具准备
投影仪,自制胶片
六、师生互动活动设计
教者提出生活中应用准确数和近似数的例子,学生讨论回答,学生自己找出类似的例子,教者提出精确度和有效数字的概念,教者提出近似数的有关问题,学生讨论解决.
七、教学步骤
(一)提出问题,创设情境
师:有10千克苹果,平均分给3个人,应该怎样分?
生:平均每人千克
师:给你一架天平,你能准确地称出每人所得苹果的千克数吗?
生:不能
师:哪怎么分
生:取近似值
师:板书课题
2.12近似数与有效数字
?教法说明】通过提出实际问题,使学生认识到研究近似数是必须的,是自然的,从而提高学生近似数的积极性
(二)探索新知,讲授新课
师出示投影1
下列实际问题中出现的数,哪些是精确数,哪些是近似数.
(1)初一(1)有55名同学
(2)地球的半径约为6370千米
(3)中华人民共和国现在有31个省级行政单位
(4)小明的身高接近1.6米
学生活动:回答上述问题后,自己找出生活中应用准确数和近似数的例子.
师:我们在解决实际问题时,有许多时候只能用近似数你知道为什么吗?
启发学生得出两方面原因:1.搞得完全准确有时是办不到的,2.往往也没有必要搞得完全准确.
以开始提出的问题为例,揭示近似数的有关概念
板书:
1.精确度
2.有效数字:一般地,一个近似数,四舍五入到哪一位,就说这个数精确到哪一位,这时,从左边第一个不是0的数字起,到精确的数位止,所有的数字,都叫做这个数的有效数字.
例如:3.3?有二个有效数字
3.33?有三个有效数字
讨论:近似数0.038有几个有效数字,0.03080呢?
?教法说明】通过讨论学生明确近似数的有效数字需注意的两点:一是从左边第一个不是零的数起;二是从左边第一个不是零的`数起,到精确的位数止,所有的数字,教者在有效数字概念对应的文字底下画上波浪线,标上①、②
例1.(出示投影2)
下列由四舍五入吸到近似数,各精确到哪一位,各有哪几个有效数字?
(1)43.8(2).03086(3)2.4万
学生口述解题过程,教者板书.
对于近似数2.4万学生又能认为是精确到十分位,这时可组织学生讨论近似数与5.4和近似数5.4万中的两个4的数位有什么不同,从而得出正确的答案.
?教法说明】对于疑点问题,通过启发讨论,适时点拨,远比教者直接告诉正确答案,理解深刻得多.
巩固练习见课本122页练习2、3页
例2(出示投影3)
下列由四舍五入得来的近似数,各精确到哪一位,各有几个有效数字?
学生活动,教者不给任何提示,请三位同学板演(基础较差些的做第一小题,基础较好的做第二、三小题)其余学在练习本上完成,请一优秀学生讲评同桌同学互相检查评定.
?教法说明】①通过本例的教学,学生能进一步把握近似数的精确度和有效数字的概念,②通过分层板演,学生点评,能提高所有学生的积极性,每个层次的学生都得到发展
(三)尝试反馈,巩固练习
(出示投影4)
一、填空
1.某校有25个班,光的速度约力每秒30万千米,一星期有7天,某人身高约1.65米,远些数据中,准确数为_________,近似数为____________
2.近似数0.1080精确到__________位,有_________个有效数字,分别是____________
二、下列各近似数,各精确到哪一位,各有哪几个有效数字:
1 32.02 1.5万3
学生活动:学生抢答:
?教法说明】抢答培养学生的竞争意识.
(四)归纳小结
师生共同小结
(1)有效数字的意义及两个注意点;
(2)带单位的近似数(为2.3万)和用科学记数法表示的近似数的精确度和有效数字的求法.
八、随堂练习
1.判断下列各题中的效,哪些是准确数,哪些是近似数?
(1)小明到书店买了10本书
(2)中国人口约有13亿
(3)一次数学测验中,有5人得了100分
(4)小华体重约54千克
2.填空题
(1)3.14精确到________位,有_________有效数字
(2)0.0102精确到_________位,有效数字是__________
(3)精确到__________位,有效数字是___________
3.选择题
(1)下列近似数中,精确到千位的是()
a.1.3万b.21.010
c.1018d.15.28
(2)有效数字的个数是()
a.从右边第一个不是0的数字算起
b.从左边第一个不是0的数字算起
c.从小数点后的第一个数字算起
d.从小数点前的第一个数字算起
九、布置作业
课本第124页a组l.
十、板书设计
人教版七年级下册数学教案篇2
教学目标
知识技能
1.了解算术平方根的概念,会求正数的算术平方根并会用符号表示
2.会用计算器求算术平方根
3.了解无限不循环小数的特点
数学思考
1.通过学习算术平方根,建立初步的数感和符号感,发展抽象思维
2.通过探究的大小,培养学生估算意识,了解两个方向无限逼近的数学思想
解决问题
1.通过拼大正方形的活动,体现解决问题方法的多样性,发展形象思维
2.在探究活动中,学会与人合作,并能与他人交流思维的过程和探究的结果
情感态度
1.通过学习算术平方根,认识数学与人类生活的密切联系
2.通过探究活动,锻炼克服困难的意志,建立自信心,提高学习热情
教学重点、难点
重点:算术平方根的`概念,感受无理数
难点:探究的大小的过程
教学过程与流程设计
活动1创设情景,引入算术平方根
20xx年10月16日,我国进行首次载人航天飞行取得圆满成功。中华民族探索太空的千年梦想实现了。宇宙在脱离地球轨道进入正常运行轨道的速度要满足一个条件,即介于第一宇宙速度与第二宇宙速度之间,第一宇宙速度和第二宇宙速度分别满足:第一宇宙速度v1(米/秒):,第二宇宙速度v2(米/秒):
小欧同学准备参加学校举行的美术作品比赛。他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,请你帮他计算一下这块正方形画布的边长应取多少?
小欧还要准备一些面积如下的正方形画布,请你帮他把这些正方形的边长都算出来:
面积191636
边长1346
上面的问题,实际上是已知一个正数的平方,求这个正数的问题
一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根,a的算术平方根记为,读作“根号a”,a叫做“被开方数”。
规定:0的算术平方根是0。
活动2通过一些简单例题,进一步了解算术平方根
1、你能求出下列各数的算术平方根吗?
2、请同学们同桌之间合作,一位同学说一个正数,另一位同学说出这个正数的算术平方根。
3、16的算术平方根等于________
4、的值等于_________
5、的算术平方根等于_________
活动3动动脑,动动手,探究的大小
你能用两个面积为单位1的小正方形拼成一个大正方形吗?
回答下列问题
(1)你所得的新正方形的面积是多少?
(2)新正方形的边长是多少?
讨论:
你知道有多大吗?
的估算:
如此进行下去,可以得到的近似值,还可以发现是一个无限不循环小数。
活动4财富大统计
1、你认为小欧要解决他参加美术作品比赛中遇到的问题 。
人教版七年级下册数学教案篇3
知识与技能:
掌握本章基本概念与运算,能用本章知识解决实际问题。
过程与方法:
通过梳理本章知识点,挖掘知识点间的联系,并应用于实际解题中。
情感态度:
领悟分类讨论思想,学会类比学习的方法。
教学重点:
本章知识梳理及掌握基本知识点。
教学难点:
应用本章知识解决实际与综合问题。
一、知识框图,整体把握
教学说明:
1、通过构建框图,帮助学生回忆本节所有基本概念和基本方法。
2、帮助学生找出知识间联系,如平方与开平方,平方根与立方根,有理数与实数等等。
二、释疑解惑,加深理解
1、利用平方根的概念解题
在利用平方根的概念解题时,主要涉及平方根的性质:正数有两个平方根,且它们互为相反数;以及平方根的`非负性:被开方数为非负数,算术平方根也为非负数。
例1已知某数的平方根是a+3及2a—12,求这个数。
分析:由题意可知,a+3与2a—12互为相反数,则它们的和为0。解:根据题意可得,a+3+2a—12=0
解得a=3
∴a+3=6,2a—12=—6
∴这个数是36
教学说明:负数没有平方根,非负数才有平方根,它们互为相反数,而0是其中的一个特例。
2、比较实数的大小
除常用的法则比较实数大小外,有时要根据题目特点选择特别方法。
人教版七年级下册数学教案篇4
教学目的:
(一)知识点目标:
1.了解正数和负数是怎样产生的。
2.知道什么是正数和负数。
3.理解数0表示的量的意义。
(二)能力训练目标:
1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。
2.会用正、负数表示具有相反意义的量。
(三)情感与价值观要求:
通过师生合作,联系实际,激发学生学好数学的热情。
教学重点:
知道什么是正数和负数,理解数0表示的量的意义。
教学难点:
理解负数,数0表示的量的意义。
教学方法:
师生互动与教师讲解相结合。
教具准备:
地图册(中国地形图)。
教学过程:
引入新课:
1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、?
内容:老师说出指令:
向前两步,向后两步;
向前一步,向后三步;
向前两步,向后一步;
向前四步,向后两步。
如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。
[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。
讲授新课:
1.自然数的产生、分数的产生。
2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。
3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。
举例说明:3、2、0.5、等是正数(也可加上“十”)
-3、-2、-0.5、-等是负数。
4、数0既不是正,也不是负数,0是正数和负数的分界。
0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。
5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材p5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地x银行的存折,说出你知道的信息。
巩固提高:练习:课本p5练习
课时小结:这节课我们学习了哪些知识?你能说一说吗?
课后作业:课本p7习题1.1的第1、2、4、5题。
活动与探究:在一次数学测验中,x班的平均分为85分,把高于平均分的高出部分记为正数。
(1)美美得95分,应记为多少?
(2)多多被记作一12分,他实际得分是多少?
人教版七年级下册数学教案篇5
一、教学目标
1、知识目标:掌握数轴三要素,会画数轴。
2、能力目标:能将已知数在数轴上表示,能说出数轴上的点表示的数,知道有理数都可以用数轴上的点表示;
3、情感目标:向学生渗透数形结合的思想。
二、教学重难点
教学重点:数轴的三要素和用数轴上的点表示有理数。
教学难点:有理数与数轴上点的对应关系。
三、教法
主要采用启发式教学,引导学生自主探索去观察、比较、交流。
四、教学过程
(一)创设情境激活思维
1、学生观看钟祥二中相关背景视频
意图:吸引学生注意力,激发学生自豪感。
2、联系实际,提出问题。
问题1:钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。
师生活动:学生思考解决问题的方法,学生代表画图演示。
学生画图后提问:
1、马路用什么几何图形代表?(直线)
2、文中相关地点用什么代表?(直线上的点)
3、学校大门起什么作用?(基准点、参照物)
4、你是如何确定问题中各地点的位置的?(方向和距离)
设计意图:“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题,这是实际问题的第一次数学抽象。
问题2:上面的问题中,“南”和“北”具有相反意义。我们知道,正数和负数可以表示两种具有相反意义的量,我们能不能直接用数来表示这些地理位置和学校大门的相对位置关系呢?
师生活动:
学生思考后回答解决方法,学生代表画图。
学生画图后提问:
1、0代表什么?
2、数的符号的实际意义是什么?
3、—75表示什么?100表示什么?
设计意图:继续以三要素为定向,将点用数表示,实现第二次抽象,为定义数轴概念提供直观基础。
问题3:生活中常见的温度计,你能描述一下它的结构吗?
设计意图:借助生活中的常用工具,说明正数和负数的作用,引导学生用三要素表达,为定义数轴的概念提供直观基础。
问题4:你能说说上述2个实例的共同点吗?
设计意图:进一步明确“三要素”的意义,体会“用点表示数”和“用数表示点的思想方法,为定义数轴概念提供又一个直观基础。
(二)自主学习探究新知
学生活动:带着以下问题自学课本第8页:
1、什么样的直线叫数轴?它具备什么条件。
2、如何画数轴?
3、根据上述实例的经验,“原点”起什么作用?
4、你是怎么理解“选取适当的长度为单位长度”的?
师生活动:
学生自学完后,请代表上黑板画一条数轴,讲解画数轴的一般步骤。
设计意图:明确画数轴的步骤,使数轴的三要素在同学们的头脑中留下更深刻的印象,同时得到数轴的定义。
至此,学生已会画数轴,师生共同归纳总结(板书)
①数轴的定义。
②数轴三要素。
练习:(媒体展示)
1、判断下列图形是否是数轴。
2、口答:数轴上各点表示的数。
3、在数轴上描出下列各点:1.5,—2,—2.5,2,2.5,0,—1.5。
(三)小组合作交流展示
问题:观察数轴上的点,你有什么发现?
数轴上表示3的.点在原点的哪一侧?与原点的距离是多少个单位长度?表示—2的点在原点的哪一侧?与原点的距离是多少个单位长度?设a是一个正数,对表示a的点和—a的点进行同样的讨论。
设计意图:通过从特殊到一般的方法归纳出数轴上不同位置点的特点,培养学生的抽象概括能力。
(四)归纳总结反思提高
师生共同回顾本节课所学主要内容,回答以下问题:
1、什么是数轴?
2、数轴的“三要素”各指什么?
3、数轴的画法。
设计意图:梳理本节课内容,掌握本节课的核心――数轴“三要素”。
(五)目标检测设计
1、下列命题正确的是()
a、数轴上的点都表示整数。
b、数轴上表示4与—4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。
c、数轴包括原点与正方向两个要素。
d、数轴上的点只能表示正数和零。
2、画数轴,在数轴上标出—5和+5之间的所有整数,列举到原点的距离小于3的所有整数。
3、画数轴,表示下列有理数数的点中,观察数轴,在原点左边的点有_______个。
4、在数轴上点a表示—4,如果把原点o向负方向移动1.5个单位,那么在新数轴上点a表示的数是________。
五、板书
1、数轴的定义。
2、数轴的三要素(图)。
3、数轴的画法。
4、性质。
六、课后反思
附:活动单
活动一:画一画
钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。
思考:如何简明地用数表示这些地理位置与学校大门的相对位置关系?
活动二:读一读
带着以下问题阅读教科书p8页:
1、什么样的直线叫数轴?
定义:规定了_________、________、_________的直线叫数轴。
数轴的三要素:_________、_________、__________。
2、画数轴的步骤是什么?
3、“原点”起什么作用?__________
4、你是怎么理解“选取适当的长度为单位长度”的?
练习:
1、画一条数轴
2、在你画好的数轴上表示下列有理数:1.5,—2,—2.5,2,2.5,0,—1.5
活动三:议一议
小组讨论:观察你所画的数轴上的点,你有什么发现?
归纳:一般地,设a是一个正数,则数轴上表示数a在原点的____边,与原点的距离是____个单位长度;表示数—a的点在原点的____边,与原点的距离是____个单位长度。
练习:
1、数轴上表示—3的点在原点的_______侧,距原点的距离是______;表示6的点在原点的______侧,距原点的距离是______;两点之间的距离为_______个单位长度。
2、距离原点距离为5个单位的点表示的数是________。
3、在数轴上,把表示3的点沿着数轴负方向移动5个单位长度,到达点b,则点b表示的数是________。
附:目标检测
1、下列命题正确的是()
a、数轴上的点都表示整数。
b、数轴上表示4与—4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。
c、数轴包括原点与正方向两个要素。
d、数轴上的点只能表示正数和零。
2、画数轴,在数轴上标出—5和+5之间的所有整数。列举到原点的距离小于3的所有整数。
3、画数轴,观察数轴,在原点左边的点有_______个。
4、在数轴上点a表示—4,如果把原点o向负方向移动1.5个单位,那么在新数轴上点a表示的数是________。
人教版七年级下册数学教案篇6
教学目标:
1.掌握数轴三要素,能正确画出数轴.
2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.
教学重点:
数轴的概念.
教学难点:
从直观认识到理性认识,从而建立数轴概念.
教与学互动设计:
(一)创设情境,导入新课
课件展示课本p7的“问题”(学生画图)
(二)合作交流,解读探究
师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容——数轴.
?点拨】(1)引导学生学会画数轴.
第一步:画直线,定原点.
第二步:规定从原点向右的方向为正(左边为负方向).
第三步:选择适当的长度为单位长度(据情况而定).
第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.
对比思考原点相当于什么;正方向与什么一致;单位长度又是什么?
(2)有了以上基础,我们可以来试着定义数轴:
规定了原点、正方向和单位长度的直线叫数轴.
做一做学生自己练习画出数轴.
试一试你能利用你自己画的数轴上的点来表示数4,1.5,-3,-2,0吗?
讨论若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距多少个单位长度?
小结整数在数轴上都能找到点表示吗?分数呢?
可见,所有的都可以用数轴上的点表示;都在原点的左边,都在原点的右边.
(三)应用迁移,巩固提高
?例1】下列所画数轴对不对?如果不对,指出错在哪里?
?例2】试一试:用你画的数轴上的点表示4,1.5,-3,-,0.
?例3】下列语句:
①数轴上的点只能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有()
a.1个b.2个c.3个d.4个
?例4】在数轴上表示-2和1,并根据数轴指出所有大于-2而小于1的整数.
?例5】数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为20xxcm的线段ab,则线段ab盖住的`整点有()
a.1998个或1999个b.1999个或20xx个
c.20xx个或20xx个d.20xx个或20xx个
(四)总结反思,拓展升华
数轴是非常重要的工具,它使数和直线上的点建立了一一对应的关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.
(五)课堂跟踪反馈
夯实基??
1.规定了、 、的直线叫做数轴,所有的有理数都可从用上的点来表示.
2.p从数轴上原点开始,向右移动2个单位长度,再向左移5个单位长度,此时p点所表示的数是.
3.把数轴上表示2的点移动5个单位长度后,所得的对应点表示的数是()
a.7 b.-3
c.7或-3 d.不能确定
4.在数轴上,原点及原点左边的点所表示的数是()
a.正数b.负数
c.不是负数d.不是正数
5.数轴上表示5和-5的点离开原点的距离是,但它们分别表示.
提升能力
6.与原点距离为3.5个单位长度的点有2个,它们分别是和.
7.画出一条数轴,并把下列数表示在数轴上:
+2,-3,0.5,0,-4.5,4,3.
开放探究
8.在数轴上与-1相距3个单位长度的点有个,为;长为3个单位长度的木条放在数轴上,最多能覆盖个整数点.
9.下列四个数中,在-2到0之间的数是()
a.-1 b.1 c.-3 d.3
人教版七年级下册数学教案篇7
教学目标
1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。
2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型20xx年-20xx学年七年级数学下册全册教案(人教版)20xx年-20xx学年七年级数学下册全册教案(人教版)。
3.引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。
教学重点
1.列二元一次方程组解简单问题。
2.彻底理解题意
教学难点
找等量关系列二元一次方程组。
教学过程
一、情境引入。
小刚与小玲一起在水果店买水果,小刚买了3千克苹果,2千克梨,共花了18.8元。小玲买了2千克苹果,3千克梨,共花了18.2元。回家路上,他们遇上了好朋友小军,小军问苹果、梨各多少钱1千克?他们不讲,只讲各自买的几千克水果和总共的钱,要小军猜。聪明的同学们,小军能猜出来吗?
二、建立模型。
1.怎样设未知数?
2.找本题等量关系?从哪句话中找到的?
3.列方程组。
4.解方程组。
5.检验写答案。
思考:怎样用一元一次方程求解?
比较用一元一次方程求解,用二元一次方程组求解谁更容易?
三、练习。
1.根据问题建立二元一次方程组。
(1)甲、乙两数和是40差是6,求这两数。
(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。
(3)已知关于求x、y的方程,
是二元一次方程。求a、b的值。
2.p38练习第1题。
四、小结。
小组讨论:列二元一次方程组解应用题有哪些基本步骤?
五、作业。
p42。习题2.3a组第1题。
后记:
2.3二元一次方程组的应用(2)
人教版七年级下册数学教案篇8
一、指导思想:
根据学生的实际情况,从生活入手,结合教材内容。通过本学期数学课堂教学,夯实学生的基础,提高学生的基本技能,培养学生学习数学知识和运用数学知识的能力,帮助学生初步建立数学思维模式。最终圆满完成七年级下册数学教学任务。
二、情况分析:
通过上学期考试情况,发现本班学生的数学成绩不甚理想。基础知识不扎实,计算能力较差,思路不灵活,缺乏创新思维能力,尤其是解难题的能力低下。总体上来看,低分很多,两极分化较为严重。
三、教学目标
知识与技能目标:认识实数和相交线及平行线,理解平行线的判定及其证明;掌握平面直角坐标系;学会解二元一次方程组以及不等式的具体解法。
过程与方法目标:学会抽取实际问题中的数学信息,发展几何思维模式。培养学生的观察和思维能力,尤其是自主探索的能力。
情感与态度目标:培养学生学习数学的兴趣,认识数学源自生活实践,最终回归生活。
四、教材分析
第五章、相交线与平行线:本章主要学习有理数的基本性质及运算。本章重点内容是有理数的概念,性质和运算。本章的`难点在于理解有理数的基本性质、运算法则,并将它们应用到解决实际问题和计算中。
第六章、实数:本章主要是学习单项式和多项式的加减运算。本章重点内容是单项式、多项式、同类项的概念;合并同类项及去括号的法则及整式的加减运算。本章难点在于理解合并同类项和去括号的法则。
第七章、平面直角坐标系:本章主要学习一元一次方程的概念、等式的基本性质、一元一次方程的解法及应用。本章重点内容是理解等式的基本性质;掌握解一元一次方程的一般步骤;列方程解决实际问题的基本思路。本章难点在于解一元一次方程,并利用一元一次方程解决简单的实际问题。
第八章、二元一次方程组及不等式组:本章主要学习线段和角有关的性质。本章的重点是区别直线、射线、线段,角的有关性质和计算;理解互为余角、互为补角的性质及应用。本章的难点在于线段和角的有关计算。
五、教学措施
1、潜心钻研教材,结合学生实际情况,进行针对性的备课,精心设置课堂教学内容和模式。上好每一堂课,阅好每一份试卷,搞好每一节辅导,组织好每一次测验。
2、开展丰富多彩的课外活动,课外调查,向学生介绍数学家、数学史、数学趣题,喻教于乐,激发学生的学习兴趣,挖掘学生的潜能,培养数学特长生。
3、开展分层教学实验,使不同的学生学到不同的知识,使人人能学到有用的知识,使不同的人得到不同的发展,获得成功感,使优生更优,差生逐渐赶上。
六、课时安排
教学进度计划安排如下:
第一周正数和负数及有理数5课时
第二周有理数的加减法5课时
第三周有理数的乘法5课时
第四周有理数的乘方5课时
第五周第一单元复习与单元测试5课时
第六周测试质量分析及小结 5课时
第七周整式----单项式5课时
第八周整式----多项式5课时
第九周整式的加减5课时
第十周期中复习及段考5课时
第十一周段考测试质量分析及小结 5课时
第十二周从算式到方程5课时第十三周解一元一次方程(一) 5课时第十四周解一元一次方程(二)5课时第十五周
第十六周
第十七周
第十八周
第十九周
第二十周